Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions.

نویسندگان

  • Yanmei Zhou
  • Bin Gao
  • Andrew R Zimmerman
  • Hao Chen
  • Ming Zhang
  • Xinde Cao
چکیده

This work describes the synthesis and testing of a novel environmental sorbent that combines the advantages of biochar, chitosan, and zerovalent iron (ZVI). Chitosan was used as a dispersing and soldering reagent to attach fine ZVI particles onto bamboo biochar surfaces. Characterization of the resulted ZVI-biochar composites (BBCF) indicated that chitosan effectively soldered the iron particles onto carbonaceous surfaces within the biochar pore networks. The BBCF showed enhanced ability to sorb heavy metals (Pb(II), Cr(VI), and As(V)), phosphate (P), and methylene blue (MB) from aqueous solutions. The removal of Pb(II), Cr(VI), and MB by the biochar-supported ZVI was mainly controlled by both the reduction and surface adsorption mechanisms. Removal of anionic contaminants (As(V) and P) was likely controlled by electrostatic attraction with the iron particles on the BBCF surfaces. An additional benefit is that the contaminant-laden BBCF could be removed from aqueous solution easily by magnetic attraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate Removal from Aqueous Solutions using Green and Biodegradable Zerovalent Iron Nanoparticles

Background and objectives: Zerovalent iron nanoparticles (ZVIN) had high potential for nitrate removal from aqueous solutions due to high surface area and reactivity of them. The aim of this study was nitrate removal from aqueous solutions using environmentally friendly stabilized ZVIN. Methods: ZVIN were synthesized via chemical reduction by sodium borohydride. In order to preventing of ZVIN f...

متن کامل

Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene.

Biochar (BC) supported nanoscale zerovalent iron (nZVI) composite was synthesized and used as an activator for persulfate to enhance the trichloroethylene (TCE) removal in aqueous solutions. The degradation efficiency of TCE (0.15mmolL(-1)) was 99.4% in the presence of nZVI/BC (4.5mmolL(-1), nZVI to BC mass ratio was 1:5) and persulfate (4.5mmolL(-1)) within 5min, which was significantly higher...

متن کامل

Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater

This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1) within 260 min was 1.4 times higher and 539.5 times higher...

متن کامل

Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions

The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on t...

متن کامل

Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI

Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2014